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Abstract

Most variational models for multi-phase image segmentation are
non-convex and possess multiple local minima, which makes solving
for a global solution an extremely difficult task. In this work, we pro-
vide a method for computing a global solution for the (non-convex)
multi-phase piecewise constant Mumford-Shah (spatially continuous
Potts) image segmentation problem. Our approach is based on using
a specific representation of the problem due to Lie et al. [27]. We
then rewrite this representation using the dual formulation for total
variation so that a variational convexification technique due to Pock
et al. [30] may be employed. Unlike some recent methods in this di-
rection, our method can guarantee that a global solution is obtained.
We believe our method to be the first in the literature that can make
this claim. Once we have the convex optimization problem, we give
an algorithm to compute a global solution. We demonstrate our algo-
rithm on several multi-phase image segmentation examples, including
a medical imaging application.
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1 Introduction

Image segmentation is one of the most fundamental problems in computer
vision. The task is to assign a label to each point in a given image (i.e.,
partition the image into phases or segments) such that the labeling is optimal
with respect to a particular model. It is difficult to compute a globally
optimal solution because the models often lead to non-convex variational
problems. Most techniques instead devise algorithms to efficiently compute
solutions which are only locally optimal.

The labels assigned during image segmentation can be defined either on
a discrete grid or in a spatially continuous domain. In the discrete setting,
interest for guaranteed global solutions of vision problems has grown ever
since the stochastic approximate methods in the seminal work of Geman and
Geman [21]. Greig et al. [22] were the first to discover that the classical
Ford-Fulkerson min-cut/max-flow correspondence [20] could provide global
algorithms when the set of labels is binary and the model satisfies certain
criteria. The work of [23] showed that a class of multi-label problems can
be globally solved, but this does not include one of the most celebrated
image segmentation models: the piecewise constant Mumford-Shah model
[28] (known as the Potts model [31] for the discrete problem). Recently, for
this model, Bae and Tai [2] provide a global graph cut method for the case
of four labels under some technical assumptions. In this paper, however, our
focus is the continuous setting; see [24] for some discussion on the comparison
between discrete and continuous methods in optimization problems.

For the two-phase case (i.e., assigning one of just two labels, foreground
or background, to each point in the continuous domain) Chan et al. [12]
developed an equivalent convex formulation, thereby constructing an algo-
rithm that guarantees to find a globally optimal solution. The method relies
on a relaxation of the binary labeling function which remarkably still yields
a solution that is binary. However, this technique is not directly applicable
to the multi-phase case, which has remained an open problem.

Inspired by [12], there has been significant research devoted to globally
solving the multi-phase segmentation problem (or equivalent multi-labeling
problems). Zach et al. [35] proposed a relaxation approach along with a
decoupling to yield a convex optimization problem, but could not guarantee
a global optimum of the original problem. Lellmann et al. [26] used a similar
method, with a slightly different regularization and splitting technique, but
this had comparable limitations. Most recently, Pock et al. [29] used the dual
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formulation of total variation (TV), enforcing a convex constraint on the dual
variables. Their relaxation strictly dominates these previous approaches, in
the sense that the set of functions over which their convex minimization is
conducted contains that of the earlier methods, which results in a better
approximation. Nevertheless, this method can still not guarantee a globally
optimal solution.

The goal of this paper is to provide a convex formulation and an algorithm
that is guaranteed to compute a global solution for the multi-phase piecewise
constant Mumford-Shah model. To the best of our knowledge, this paper
provides the first approach that can make this guarantee.

Our method relies primarily on two existing approaches for image segmen-
tation and computer vision problems. First, we use the so-called piecewise
constant level set method (PCLSM) framework of Lie et al. [27] to formu-
late the problem, which provides a convenient representation to enforce the
constraints in the optimization. Second, we use the novel convexification ap-
proach of Pock et al. [30] (which was motivated by the work of Ishikawa in the
discrete Markov Random Field setting [23]) that converts certain non-convex
variational problems to equivalent convex problems in a higher dimensional
space. Using the dual formulation of TV written in the PCLSM framework
allows our method to obtain a convex-concave min-max problem from which
a global solution may be computed.

The paper is organized as follows. In Section 2, we formally introduce
the segmentation problem and explain the solution of [12] for the two-phase
case. In Section 3, we begin by describing the representation we use for the
multi-phase problem as well as the convexification technique of [30]. Later in
the section, we show our main result: that we can find a global solution for
multi-phase segmentation; we also describe an algorithm for computing such
a solution. Section 4 explains the numerical implementation of the algorithm
and shows some experimental results. Finally, in Section 5, we compare our
method to previous work in this direction and give some concluding remarks.
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2 Segmentation problem and two-phase solu-

tion

Let I : Ω → R be a given image with bounded image domain Ω ⊂ Rd.
Mumford and Shah [28] proposed the minimization problem

inf
f,C

∫

Ω

(I(x)− f(x))2 dx + ν

∫

Ω\C
|∇f(x)|2 dx + µ|C|

to find an optimal piecewise smooth approximation of a general function
(the image I), where ν and µ are fixed parameters. The edge set C ⊂ Ω is a
closed set that defines a partition Ω = ∪iΩi such that the restrictions fi of
the function f to the segments Ωi are differentiable. In the simplest form of
the model, the function f is taken to be constant on each segment, reducing
to the piecewise constant Mumford-Shah problem

inf
ci,C

{∑
i

∫

Ωi

(ci − I(x))2 dx + µ |C|
}

,

where f =
∑

i ci1Ωi
. This is also known as the Potts model [31] in the discrete

setting, originating in solid state physics, and hence we will use the names
of these models interchangeably. The important property of the model is
imposing a regularity measure that favors the labels of neighboring points to
be identical but interprets the value of each label to be immaterial.

We will herein assume that the optimal constants ci are known a priori
and the number of segments (say, k + 1) is fixed. Indeed, even making this
stringent assumption leaves us with the difficult non-convex problem

inf
Ω0,...,Ωk

{
k∑

i=0

1

2
|∂Ωi|+

∫

Ωi

(ci − I(x))2 dx

}
,

where it is implicit that Ω = ∪iΩi and the Ωi are pairwise disjoint. In this
work, we will not consider the even more challenging problem where either the
constants or number of phases are unknown. Likewise, the related methods
for the multi-phase problem mentioned in the Introduction and discussed
further in Section 5 also make these reasonable assumptions.

To slightly generalize our method to data terms other than the one in the
Mumford-Shah functional, the multi-phase problem we will solve is

inf
Ω0,...,Ωk

{
k∑

i=0

|∂Ωi|+
∫

Ωi

gi(x) dx

}
. (1)
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For example, when the region descriptors gi(x) are equal to (ci − I(x))2

(where we have absorbed constant factors), we have the case of Mumford-
Shah. This generalization does not add any complexity to our problem. Our
assumption concerning the ci translates to the assumption that the gi(x) are
known beforehand.

When k = 1, expression (1) above becomes the two-phase problem

inf
Ω0⊂Ω

{
|∂Ω0|+

∫

Ω0

g0(x) dx +

∫

Ω\Ω0

g1(x) dx

}
. (2)

Many popular methods to solve (2) are based on the level set method (e.g.,
the Chan-Vese method [14]), but there is no guarantee to find a global solu-
tion. In [12], Chan et al. proposed a method for finding global minimizers
through a convex formulation of the problem. They showed that (2) can be
written equivalently

min
θ∈{0,1}

{
E(θ) :=

∫

Ω

|∇θ| dx +

∫

Ω

(1− θ(x))g0(x) + θ(x)g1(x) dx

}
, (3)

where θ : Ω → {0, 1} is a binary function that defines the segmentation:
x ∈ Ω0 if θ(x) = 0 and x ∈ Ω1 if θ(x) = 1. However, even though E(θ) is
convex, the minimization is done over a non-convex set of binary functions.

The important final step is that a relaxation may be taken to allow θ ∈
[0, 1] without changing the minimum. Indeed, letting θ∗ be any minimizer of
the binary problem (3), then any θ ∈ [0, 1] satisfies E(θ∗) ≤ E(θ). Moreover,
a solution of (3) can be obtained by finding a solution of the relaxed problem
and then thresholding. Namely, letting now θ∗ be a minimizer of the relaxed
problem, the binary function 1{θ∗>t} is a minimizer of (3) for any t ∈ (0, 1).
This relaxation completes the conversion of the original problem (2) to a
convex minimization problem. We say the relaxation is exact because a true
solution of the original problem can be exactly recovered from the relaxed
problem.

Relaxation in this context dates back to Strang’s work [33] on maximal
flows. The critical property for the functional of a problem

min
x∈{0,1}

F (x)

to possess in order to have an exact relaxation to x ∈ [0, 1] is a “generalized
co-area formula” of the form

F (x) =

∫ 1

0

F (1{x>t}) dt.
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The article [7] contains a nice presentation of the proof that the relaxation is
exact. As it turns out, the fact that the relaxation does not have a straight-
forward extension to vector-valued functions is the obstacle in many of the
recent multi-phase approaches mentioned in the introduction; see Section 5
for further discussion.

3 Extension to multi-phase

3.1 Multi-phase problem representation

We return now to developing the tools to globally solve the multi-phase
problem

inf
Ω0,...,Ωk

{
k∑

i=0

|∂Ωi|+
∫

Ωi

gi(x) dx

}
. (4)

Moving forward, it becomes advantageous to represent this problem as an
equivalent optimization problem over functions rather than over partitions
of Ω. In the literature, there are a number of representations of the segmen-
tation problem as such, e.g. [34, 15]. For reasons which we hope to clarify
throughout this paper, we use the PCLSM representation of Lie et al [27] in
order to globally solve the problem. We represent the partition Ω = ∪iΩi by
a piecewise constant labeling function u : Ω → {0, . . . , k} with the property
that u = i on Ωi. For convenience, we introduce the notation ψi(u) := 1{u=i}
for the k + 1 characteristic functions induced by u. Clearly the function u is
given by u =

∑k
i=1 iψi. The characteristic functions can further be utilized

to express the boundary lengths of the segments:

|∂Ωi| =
∫

Ω

|∇ψi(u)| dx.

This is a consequence of the fact that the TV of the characteristic function of
a set is its perimeter. Under this representation, the segmentation problem
(4) becomes the constrained optimization problem

min
u : Ω→{0,...,k}

{
k∑

i=0

∫

Ω

|∇ψi(u)|+ ψi(u)gi(x) dx

}
.

Next, because we eventually wish to obtain a continuous convex formulation,
we relax and let u ∈ R. To ensure that the function u takes values in
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{0, . . . , k}, we introduce

K(u) =
k∏

i=0

(u− i),

so that if a function u : Ω → R satisfies identically K(u) = 0, then there
exists a unique i ∈ {0 . . . , k} for every x ∈ Ω such that u(x) = i. We also
use the interpolation formulas

ψi(u) =
∏

i 6=j

(u− j)

(i− j)
,

which coincide with the characteristic functions on the constraint set. Our
problem is now

min
u : Ω→[0,k]

{
k∑

i=0

∫

Ω

|∇ψi(u)|+ ψi(u)gi(x) dx

}
s.t. K(u) = 0. (5)

Notice there is no harm replacing the condition u ∈ R with u ∈ [0, k] because
the constraint K(u) already demands u ∈ {0, . . . , k}. Globally solving this
problem appears to be quite formidable since both the objective function
and the feasible set are non-convex. The remedy is a technique for convert-
ing certain non-convex problems to convex ones, which we describe in the
following subsection.

3.2 Convex relaxation by functional lifting

We briefly review the method of [30] to solve minimization problems of the
form

min
u : Ω→Γ:=[γmin,γmax]

∫

Ω

|∇u|+ ρ(x, u(x)) dx, (6)

where ρ : Ω × Γ → R may be non-convex. The method transforms this
non-convex problem into an equivalent convex problem through a change
of independent variables and a relaxation on the constraints. While our
problem (5) is not quite of this form, we will eventually use this method
in our technique. In our application, we will frequently take γmin = 0 and
γmax = k since these are the endpoints of the feasible set of (5).

Simply put, the idea is to reformulate the problem in terms of the super-
level set function φ : Ω×Γ → {0, 1} defined by φ(x, γ) = 1{u(x)>γ}(x) in such
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a way that the objective function of the reformulated problem is convex. The
function u may then be recovered from φ from the layer-cake formula

u(x) = γmin +

∫

Γ

φ(x, γ)dγ. (7)

One tool used to accomplish this reformulation is the co-area formula [18, 19]

∫

Ω

|∇u|dx =

∫

Ω

∫

Γ

|∇φ|dγdx.

The other key observation is that δ(u(x)− γ) = |∂γφ(x, γ)|. Indeed, since φ
is the super-level set function of u,

φ(γ, x) =

{
1 if γ < u(x),

0 otherwise.

Hence, the derivative of φ with respect to γ is zero except when u(x) = γ,
where a jump occurs and the magnitude of this derivative is a delta function
centered at u(x)− γ. It follows that

∫

Ω

ρ(x, u(x)) dx =

∫

Ω

∫

Γ

ρ(x, γ) |∂γφ| dγ dx.

Thus, when φ is the super-level set function of u, we have
∫

Ω

|∇u|+ ρ(x, u(x)) dx =

∫

Ω

∫

Γ

|∇φ|+ ρ(x, γ) |∂γφ| dγ dx. (8)

This implies that we may solve (6) from

min
φ∈{0,1}

∫

Ω

∫

Γ

|∇φ|+ ρ(x, γ) |∂γφ| dγ dx, (9)

as long as we require φ to be a super-level set function, i.e., φ(x, γmin) =
1, φ(x, γmax) = 0, and φ(x, ·) is non-increasing. We then use (7) to obtain u
from φ. Observe that the objective function of (9) is convex in φ because the
non-convex function ρ does not depend on φ; the non-convexity has somehow
been integrated out.

The authors of [30] call this technique functional lifting because we have
increased the dimension of the arguments of the functions over which the
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minimization is taken. Indeed, rather than minimize over functions u(x),
we instead minimize over functions φ(x, γ). The idea was motivated by the
discrete approach of Ishikawa [23] in which an appropriate auxiliary graph
with an extended node set was created, and standard (binary) graph-cut
computations (see, e.g., [25]) were used to solve the problem.

Finally, analogous to the procedure in [12], a relaxation on φ is taken to
allow φ ∈ [0, 1]. This is crucial to ultimately obtain a convex minimization
problem. The form of the integrand of (9) allows for essentially the same
proof as that of [12] to show the relaxation is exact, in the sense described at
the end of Section 2. In other words, thresholding a minimizer of the convex
problem

min
φ∈D

∫

Ω

∫

Γ

|∇φ|+ ρ(x, γ) |∂γφ| dγ dx,

where

D = {φ : Ω× Γ → [0, 1] : φ(x, γmin) = 1, φ(x, γmax) = 0},

yields a minimizer of (9), which in turn via (7) results in a solution of the
original non-convex problem. It is worth mentioning that because the result-
ing objective function is convex but not strictly so, there is in general not a
unique minimizer.

Despite the effectiveness of this method, it does not directly apply to
our segmentation model. The first term in (6) is the TV of the labeling
function u. This penalizes boundaries proportional to the difference between
the values in the neighboring segments. Instead, our model (as well as many
others) wants to penalize all boundaries equally since the value of the labels
should be arbitrary.

3.3 Convex method for multi-phase problem

We are now ready to explain our method for finding a global solution of
(5). To enforce the constraint K(u) = 0, we use an augmented Lagrangian
method [3]. Using results from the theory of constrained optimization, if we
find a sequence {uj} of global minimizers of

min
u∈[0,k]

{∫

Ω

k∑
i=0

(|∇ψi(u)|+ ψi(u)gi(x)) + λjK(u) +
rj

2
K(u)2 dx

}
(10)
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for appropriate choices of the multipliers λj ∈ L2(Ω) and the penalty param-
eters rj > 0, then any limit point of the sequence will be a global minimizer
of (5). For example, one condition that guarantees such a global minimizer
is when the set of multipliers is bounded and the penalty parameters satisfy
r1 < r2 < · · · and rj → ∞ [3, Prop. 2.1]. In practice, appropriately chosen
values for λj, rj can provide better convergence results; see Section 4. It
remains to find a global minimizer of (10) for fixed j.

To this end, we use the dual formulation of TV [13, 8, 9]. We introduce
dual variables pi : Ω → Rd (recall that Ω ⊂ Rd) for i = 0, . . . , k so that (10)
becomes

min
u∈[0,k]

max
|pi|≤1

{∫

Ω

k∑
i=0

(− div pi · ψi(u)) + wj(x, u(x)) dx

}
, (11)

where we have put

wj(x, γ) =
k∑

i=0

(ψi(γ)gi(x)) + λjK(γ) +
rj

2
K(γ)2.

The norm in the maximization constraint in the above expression refers to
the L2 norm on the dual variables.

Using the functional lifting method described in Section 3.2, we see that
if φ is the super-level set function of u, then

max
|pi|≤1

∫

Ω

k∑
i=0

(− div pi · ψi(u)) + wj(x, u(x)) dx

is equal to

max
|pi|≤1

{∫

Ω

∫ k

0

(
k∑

i=0

(− div pi · ψi(γ)) + wj(x, γ)

)
|∂γφ| dγ dx

}
,

and hence (11) is equivalent to

min
φ∈D

max
|pi|≤1





∫

Ω

∫ k

0

(
k∑

i=0

(− div pi · ψi(γ)) + wj(x, γ)

)
|∂γφ| dγ dx

︸ ︷︷ ︸
Φj(φ,p)





,
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where
D = {φ : Ω× Γ → [0, 1] : φ(x, 0) = 1, φ(x, k) = 0}. (12)

Put

X =
{
p = (p0, . . . , pk) : Ω → Rd×(k+1) : |pi| ≤ 1 ∀i = 0, . . . , k

}
. (13)

We have an optimization problem over the set D ×X, where D and X are
compact, convex subsets of linear topological spaces, such that Φj(φ, ·) is
concave on X for all φ ∈ D and Φj(·,p) is convex on D for all p ∈ X. By
Sion’s minimax theorem [32], the minimization and maximization operations
may be freely interchanged.

We summarize our main result in the following theorem, whose proof
follows from the entirety of this section.

Theorem 1. The multi-phase segmentation problem

inf
Ω0,...,Ωk

{
k∑

i=0

|∂Ωi|+
∫

Ωi

gi(x) dx

}
,

equivalently

min
u : Ω→[0,k]

{
k∑

i=0

∫

Ω

|∇ψi(u)|+ ψi(u)gi(x) dx

}
s.t. K(u) = 0,

can be globally solved by finding a limit point u∗ of a sequence of functions uj,
constructed as follows. Suppose ({λj}, {rj})∞j=1 is such that {λj} is bounded,
r1 < r2 < · · · , and rj →∞. For each j, globally solve the convex optimization
problem

min
φ∈D

max
p∈X

Φj(φ,p)

to obtain a function φ∗j and then form the binary function φj := 1{φ∗j >t} for

any t ∈ (0, 1). Finally, compute the solution uj via

uj(x) =

∫ k

0

φj(x, γ)dγ.
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3.4 Algorithm

Let us now describe an algorithm to obtain a global optimal solution of (1),
as guaranteed by Theorem 1. Our objective is simply to describe a global
algorithm resulting from our theory rather than developing the most efficient
algorithm possible, which we leave for future work.

For the inner maximization step, observe that the terms in our primal-
dual objective function dependent on the dual variables pi decouple. In other
words, to conduct the maximization, we may separately solve for each i:

max
|pi|≤1

{∫

Ω

∫ k

0

− div pi · ψi(γ) |∂γφ| dγ dx

}
,

or equivalently,

max
|pi|≤1

{∫

Ω

pi · ∇
(∫ k

0

ψi(γ) |∂γφ| dγ

)
dx

}
.

This may be solved using the iterative scheme [10]:

pn+1
i = PX

(
pn

i + τp∇
(∫ k

0

ψi(γ) |∂γφ
n| dγ

))
, (14)

where τp denotes the step size of updates for the pi variables. The operator
PX is the projection onto the set X defined in (13), i.e.,

PX(q) =

(
q0

max(q0, 1)
, . . . ,

qk

max(qk, 1)

)

for all q : Ω → Rd×(k+1).
For the outer minimization problem, we use an explicit gradient descent

method derived from the corresponding Euler-Lagrange equation. Again,
let us emphasize that this is just one method to perform this minimization
subproblem and certainly not the most efficient. It was instead chosen for
ease of implementation. Put

Wj(x, γ,p) =
k∑

i=0

(− div pi(x) · ψi(γ)) + wj(x, γ).

The problem is then, for fixed p,

min
φ∈D

{∫

Ω

∫ k

0

W (x, γ,p) |∂γφ| dγ dx

}
.
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Introducing an artificial time t, the gradient descent PDE is

∂φ

∂t
= −∇γ ·

(
W (x, γ,p)

∂γφ

|∂γφ|
)

.

We write the divergence operator ∇γ· = divγ instead of ∂γ since these will be
different in the finite difference numerical scheme. To avoid the degenerate
case when ∂γφ = 0, we regularize this equation by some small ε > 0 to yield

∂φ

∂t
= −∇γ ·

(
W (x, γ,p)

∂γφ√
ε2 + (∂γφ)2

)
.

This gives the iterative scheme

φn+1 = PD

{
φn + τφ∇γ ·

(
W (x, γ,p)

∂γφ
n

√
ε2 + (∂γφn)2

)}
, (15)

where PD is the Euclidean projection onto the convex set D defined in (12).
Summarizing, we propose the following algorithm.

Algorithm 1. 1. Fix step sizes τp, τφ > 0, convergence tolerances 0 <
εu, εφ ¿ 1, and regularization parameter 0 < ε ¿ 1.

2. Let j be the iteration number for the function u, multiplier λ, and
penalty parameter r. Initialize u0, λ0, and r0. Until convergence
|uj+1 − uj| < εu, update uj, λj, and rj with the following:

(a) Let n be the iteration number for the variables φ and pi (i =
0, . . . , k). Initialize φ0 as the super-level set function of uj. Ini-
tialize p0

i = 0. Until convergence |φn+1 − φn| < εφ, update φn and
pn

i with the following:

i. pi-step: For each i, update using (14).

ii. φ-step: Update using (15).

(b) Threshold φn+1 to 1{φn+1> 1
2
} then obtain uj+1 from the layer-cake

formula

uj+1 =

∫ k

0

1{φn+1> 1
2
} dγ.

Choose λj+1 and rj+1 to satisfy the conditions of the theorem.

Note that the Euclidean projection PD can be implemented by a simple
point-wise truncation operation.
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4 Numerical implementation and experimen-

tal results

To simplify the discussion of the numerical implementation of the algorithm,
we consider only the d = 2 case and let Ω = (0, 1)2. We use the standard
discretization in the spatial domain

Ωh = {1, . . . , N} × {1, . . . , N}

with spatial step size h = 1/N , and use the discretization

Γ∆γ = {(g − 1)∆γ : 1 ≤ g ≤ Nγ}

with Nγ = 1 + k/∆γ. A spatially continuous function f : Ω× Γ → R is now
approximated by a discrete function fh,∆γ, from which we will often omit the
superscripts. For f : {1, . . . , N}2 × {1, . . . , Nγ} → R, we use the notation
fi,j,g := f(i, j, g). We have the following finite difference formulas for the
derivative operators:





(divγ f)i,j,g = (fi,j,g − fi,j,g−1)/∆γ

(∂γf)i,j,g = (fi,j,g+1 − fi,j,g)/∆γ

(∇f)1
i,j,g = (fi+1,j,g − fi,j,g)/h

(∇f)2
i,j,g = (fi,j+1,g − fi,j,g)/h

with appropriate boundary conditions (see [9]). In our experiments, we are
given a discrete image defined on Ωh and let h = 1. We set ∆γ = 0.25.

We mentioned in the previous section that the augmented Lagrangian
variables λj and rj should satisfy the restrictions of Theorem 1 in order to
guarantee that the algorithm obtains a globally optimal solution. In practice,
these variables may be chosen differently to increase the efficiency of the
algorithm. For example, in the augmented Lagrangian technique of [27], the
penalty parameters rj are taken to be equal to some constant r for all j, and
the Lagrange multipliers are updated as λj+1 = λj + rK(uj); we elect to use
this update in our implementation. We let r = 1 and initialize λ0 = 1.

Our first two experiments are given to illustrate that our method can
obtain a global solution in situations where previous methods may not. The
first is well-known in the discrete graph-cut literature. In [4], an experimental
comparison of min-flow/max-cut algorithms is given. In particular, for the
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(a) Input (b) Result

Figure 1: Segmentation of the diamond image.

multi-labeling problem of the diamond picture in Figure 1(a), the authors of
[4] explain that the problem is NP-hard and instead approximate the solution
using the iterative expansion method of [5]. The method is proved to find
an approximate solution within a factor of two of the optimal value of the
objective function, but cannot find a global solution. On the other hand, our
method produces the global minimum. The segmentation result is given in
Figure 1(b).

Next, we consider a synthetic three-phase segmentation problem whose
optimal solution is given by a triple junction. This example is motivated by
an example in [30]. The authors of [30] demonstrated that their method finds
a solution that is closer to the optimal solution than the previous techniques
of [35, 26]. However, the solution obtained there is not binary (i.e., it does not
uniquely assign exactly one label to each point) and hence is not a solution
of the original problem. In contrast, our method produces a valid solution
by construction and our theory guarantees its optimality. The segmentation
result is shown in Figure 2.

We now illustrate our algorithm on two real-world examples. Figure 3(a)
shows an MRI brain image common to medical imaging applications. Fig-
ure 3(b) shows the result with four phases. We show each phase in a Fig-
ures 3(c)–(f). Finally, we apply the algorithm to a color image in Figure 4
using four phases.
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(a) Input (b) Result

Figure 2: Segmentation of a synthetic image. The optimal solution is given
by a 120◦ triple junction.

Recall that our method assumes that the region descriptors (which, in
the case of piecewise constant Mumford-Shah, are characterized by the mean
intensities of each segment) are known a priori. In our experiments, we
apply a k-means clustering algorithm to determine these values. Variations
of our algorithm could include updating these values during the segmentation
process, but at the moment our theory would not guarantee an optimal
solution. Another alternative would be to run the entire algorithm several
times, updating these values after convergence, to yield slightly better results.

5 Comparison with other approaches

In the previous sections we described a method for globally solving the
multi-phase segmentation problem under the Mumford-Shah/Potts model.
Our method relied upon a particular way of representing the optimization,
namely, the PCLSM representation of Lie et al. [27]. We now contrast our
approach with the other ones mentioned in the Introduction, none of which
can guarantee a global solution.
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(a) Input (b) Result

(c) Phase 1 (d) Phase 2 (e) Phase 3 (f) Phase 4

Figure 3: Segmentation of an MRI brain image into four phases.
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(a) Input (b) Result

Figure 4: Segmentation of a natural color image into four phases.

5.1 Convex relaxation over simplex (Zach et al. [35],
Lellmann et al. [26])

Recall that we decompose the labeling function u : Ω → {0, . . . , k} with

ψi =

{
1 if u = i,

0 otherwise.

This means that u =
∑

i iψi. Rather than proceed as in Section 3.3, consider
instead the formulation

min
Ψ=(ψ0,...,ψk)∈S

{
F (Ψ) :=

k∑
i=0

∫

Ω

|∇ψi|+ ψigi(x) dx

}
, (16)

where

S =

{
(f0, . . . , fk) : Ω → {0, 1}k+1 :

k∑
i=0

fi(x) = 1 for all x ∈ Ω

}
.

The natural multi-dimensional analogue of the one-dimensional convex re-
laxation approach (like that of [12] or [30]) would be to minimize over the
convex probability simplex

C =

{
(f0, . . . , fk) : Ω → [0, 1]k+1 :

k∑
i=0

fi(x) = 1 for all x ∈ Ω

}

18



so that we have the convex minimization problem

min
(ψ0,...,ψk)∈C

{
k∑

i=0

∫

Ω

|∇ψi(x)|+ ψi(x)gi(x) dx

}
. (17)

This is essentially the method proposed in [35]. To solve (17), additional
variables (v0, . . . , vk) : Ω → Rk were introduced to decouple the regularization
and data terms [1, 6], yielding

min
(ψ0,...,ψk),(v0,...,vk)∈C

{∫

Ω

∑
i

|∇ψi|+
∑

i

1

2µ
(ψi − vi)

2 +
∑

i

ψigi dx

}
,

where µ > 0 is a parameter that controls the quadratic approximation of
ψi and vi for each i. Similarly, Lellmann et al. [26] considered the relaxed
problem

min
(ψ0,...,ψk)∈C





∫

Ω

√∑
i

|∇ψi|2 + ψigi(x) dx



 . (18)

Up to constant factors, this is equivalent to (17) when (ψ0, . . . , ψk) ∈ S. To
solve the convex optimization problem (18), a Douglas-Rachford splitting
algorithm [16] was used.

The issue with both of these methods is that the minimizers of (17)
and (18) cannot be guaranteed to lie in the set S. More precisely, if Ψ∗ =
(ψ∗0, . . . , ψ

∗
k) is a minimizer of, for example, (17), then it could be the case

F (Ψ∗) is strictly less than the minimum of F over S. It is unfortunately not
possible (in contrast to [12] or [30]) to obtain a minimizer of (16) simply by
constructing (1{ψ∗0>t}, . . . , 1{ψ∗k>t}) for any t ∈ (0, 1), since this thresholded
vector need not even be in S. It is also not possible to obtain the minimizer
by assigning, for each x ∈ Ω, the unit vector ~ei∗ with i∗ = argminj ψj(x). In
short, this relaxation is not exact and therefore cannot be used to globally
solve the original problem.
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5.2 Convex relaxation on dual variables (Pock et al.
[11])

Another decomposition of the labeling function u : Ω → {0, . . . , k} is the
following. Put θ0 = 1, θk+1 = 0, and for i = 1, . . . , k,

θi(x) =

{
1 if u(x) ≥ i,

0 otherwise.

Then u =
∑

i θi, and a one-to-one correspondence between the labeling func-
tion u and the k-tuple (θ1, . . . , θk) is guaranteed by imposing the condition
(θ1, . . . , θk) ∈ B0, where

B0 =
{
(θ1, . . . , θk) : Ω → {0, 1}k : 0 ≤ θk(x) ≤ · · · ≤ θ1(x) ≤ 1 ∀x ∈ Ω

}
.

Note the relationship between this decomposition and the previous one:

θi(x)− θi+1(x) = ψi(x).

Under this framework, the segmentation problem is

min
(θ1,...,θk)∈B0

{
k∑

i=0

∫

Ω

|∇(θi(x)− θi+1(x))|+ (θi(x)− θi+1(x))gi(x) dx

}
. (19)

The novel approach of [29] is to use the dual formulation of TV to obtain
a more tractable minimization problem from (19). Recall that the regular-
ization term in the Mumford-Shah/Potts model is the (d − 1)-dimensional
Hausdorff measure of the so-called jump set Ju (that is, the set of essential
discontinuities) of the function u of bounded variation (see [17] for more on
BV functions and their properties). In other words, up to constant factors,

k∑
i=0

∫

Ω

|∇(θi(x)− θi+1(x))| dx = Hd−1(Ju).

Although highly nontrivial, this can be written (see the technical report [11])

Hd−1(Ju) = sup
ξ∈K

{
k∑

i=1

−
∫

Ω

θi(x) div ξi(x) dx

}
,
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where

K =

{
(ξ1, . . . , ξk) : Ω → Rd×k :

∣∣∣∣∣
∑

i1≤i≤i2

ξi(x)

∣∣∣∣∣ ≤ 1 ∀x ∈ Ω, 1 ≤ i1 ≤ i2 ≤ k

}
.

It is straightforward to see that this set K is convex. Thus, this yields the
problem

min
θ∈B0

sup
ξ∈K

{
k∑

i=1

−
∫

Ω

θi(x) div ξi(x) + (θi(x)− θi+1(x))gi(x) dx

}
,

which turns out to be equivalent (again see [11]) to

min
θ∈B

sup
ξ∈K

{
k∑

i=1

−
∫

Ω

θi(x) div ξi(x) + |θi(x)− θi+1(x)| gi(x) dx

}
,

where
B =

{
(θ1, . . . , θk) : Ω → {0, 1}k

}

is binary but now unordered. The problem remains non-convex due to the
set B. As we have seen previously, a relaxation is taken to minimize over θ
over the convex hypercube

R =
{
(θ1, . . . , θk) : Ω → [0, 1]k

}
.

However, once again the relaxation fails to be exact: there is no guarantee
that we may obtain a true minimizer over B from a minimizer over R.

5.3 Exact, separately convex relaxation

Finally, let us mention one more alternative approach to use convex relax-
ation for the multi-phase problem. Suppose the number of phases k + 1 is
equal to 2n for some integer n. (In fact, this is no restriction whatsoever since
superfluous phases may be taken to be empty.) The multi-phase framework
[34] uses n level set functions ϕ1, . . . , ϕn to represent the segmentation, where
the union of the zero level-sets of the ϕi yields the edges of the segmentation.
Equivalently, we can consider the binary vector of Heaviside functions of the
ϕi, say h = (h1, . . . , hn) : Ω → {0, 1}n; each unique binary vector corresponds
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to one phase of the partition. The segmentation problem may be formulated
as

min
h∈{0,1}n

G(h) :=





∫

Ω

n∑
i=1

|∇hi|+
∑

b∈{0,1}n

Zb(h)g̃b(x) dx



 , (20)

where

Zb(h) =
n∏

i=1

zbi
(hi), zbi

(y) =

{
1− y if bi = 0,

y if bi = 1.

The region descriptor g̃b is simply a relabeling of gj where the components
of b are the base-2 digits for j. For example, in the four-phase case when
n = 2,

G(h1, h2) =

∫

Ω

|∇h1| dx +

∫

Ω

|∇h2| dx +

∫

Ω

g(1,1)(x)h1(x)h2(x) dx

+

∫

Ω

g(0,1)(x)(1− h1(x))h2(x) dx +

∫

Ω

g(1,0)(x)h1(x)(1− h2(x)) dx

+

∫

Ω

g(0,0)(x)(1− h1(x))(1− h2(x)) dx.

It is straightforward to prove that (20) has an exact convex relaxation.

Proposition 2. We have

min
h∈{0,1}n

G(h) = min
h∈[0,1]n

G(h).

Moreover, if h∗ : Ω → [0, 1]n is a solution of the relaxed problem, then

(1{h∗1(x)>t1}, . . . , 1{h∗n(x)>tn}) : Ω → {0, 1}n

is a solution of the binary problem (20) for any (t1, . . . , tn) ∈ (0, 1)n.

Proof. We generalize the two-phase proof from [7]. Given a solution h∗ of the
relaxed problem, define φ(x, t) = (φ1(x, t1), . . . , φn(x, tn)), where φi(x, ti) =
1{h∗i (x)>ti}, for any t = (t1, . . . , tn) ∈ [0, 1]n. By the coarea formula,

∫

Ω

|∇h∗i | dx =

∫

Ω

∫ 1

0

|∇φi(x, t)| dt.
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By the layer-cake formula,

∫

Ω

Zb(h∗)g̃b(x) dx =

∫

Ω

g̃b(x)

(
n∏

i=1

∫ zbi
(h∗i )

0

dti

)
dx

=

∫

[0,1]n

∫

Ω

g̃b(x)Zb(φ(x, t)) dx dt.

Hence,

G(h∗) =

∫

[0,1]n
G(φ(x, t)) dt.

Let h be a solution of the binary problem. Since φ ∈ {0, 1}n, we have
G(φ) ≥ G(h) for all t. On the other hand, because the relaxed problem is
minimized over a larger set, we have G(h) ≥ G(h∗). Thus,

G(h∗) =

∫

[0,1]n
G(φ(x, t)) dt ≥

∫

[0,1]n
G(h) = G(h) ≥ G(h∗),

which implies that G(h) = G(h∗) = G(φ(x, t)) for all t ∈ (0, 1)n.

The objective functional G(·) is not convex, but it is separately convex
in each hi, i.e., for all i, if every other hj (j 6= i) is fixed, then the function
is convex in hi. Separate convexity cannot in general provide an algorithm
that guarantees to find a global minimizer. However, in practice, this method
seems to give satisfactory results.

5.4 Conclusion

In conclusion, we have provided a method that guarantees a global solution
of the multi-phase piecewise constant Mumford-Shah segmentation problem.
The method solves a sequence of convex optimization problems to yield a
global solution of the original non-convex problem. Our method appears
to be the first in the literature that can guarantee that a global solution is
obtained.

In this section, we have described alternative approaches to solving this
multi-phase segmentation problem. In some sense, compared with our ap-
proach, these methods are more natural multi-phase generalizations of [12].
However, each of these methods is flawed in the sense that a global minimizer
cannot be guaranteed. The techniques described in Sections 5.1–5.2 are not
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exact relaxations; indeed, in general, one cannot obtain a global minimizer
of the multi-phase problem from a minimizer of the respective convex refor-
mulations. On the other hand, the technique described in Section 5.3 is an
exact relaxation, but unfortunately the lack of convexity of the reformulation
prohibits the assurance of a global minimizer.

We see that the strength of our approach is to formulate the multi-phase
problem in such a way that we can apply a convex relaxation approach faith-
fully. This involves using the PCLSM framework with the augmented La-
grangian, the dual formulation of TV, and functional lifting for the convex
relaxation. This combination of tools is able to guarantee the global solution,
in contrast to previous methods.

There is still future work that can be done in this direction. This includes
developing algorithms to improve the efficiency of our method. We also want
to consider the more difficult problem in which the optimal constants (i.e.,
the region descriptors) are not known a priori.
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